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Abstract. The formal verification of BIG DATA systems remains as a challenging 

task to be addressed since a very large and complex state space describing the 

behavior of the system must be explored and verified. In particular, the state 
explosion problem arises as one of the most problematic issues to be faced 

against. Some approaches have leveraged on some architectural patterns used in 

BIG DATA system development, especially those focused on the MAP-REDUCE 

architecture. Taking this into consideration in this work we present VG-FVS, a 
new version of our framework FVS (Feather weight Visual Scenarios), which is 

specially developed to address the state explosion problem. This is achieved by 

integrating FVS with MaRDiGraS, a generic library which eases the state space 

exploration using a MAP-REDUCE software architecture. Empirical validation 
analyzing BIG DATA systems was carried on, showing promising results for our 

approach. 
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1. Introduction 

Modern software development sometimes includes the outstanding presence of a 

vast amount of data to be analyzed, explored and inspected. Valuable information and 

analysis can be automatically gathered employing several artificial intelligence 

techniques. This phenomena may be the origin of the so called Data Science Software 

Development [12,19,17]. It is clear that systems in this domain also need to be properly 

formally verified. That is, their expected behavior must be first specified and then it 

must be verified that the implementation fulfills the specification. Common formal 

verification techniques and tools were adapted to fit the new challenges that these kind 

of systems impose [5,13,8,18,11,20,15]. 

In this sense, the most usual extensions in the software verification phase were 

focused on improving performance issues by parallelising tools and algorithms or 

enriching the expressive power of the specification language [5,8,2,16,9]. When 

advancing in this direction, and old “enemy” of formal software verification must be 

faced: the state explosion problem[21]. This problem can be stated in simple words in 

the following manner: the number of possible states delineating the behavior of the 

system under analysis is way too extensive to apply formal verification tools. Perhaps 

the MaRDiGraS framework [4] represents one of the most meaningful milestones to 

address this problem. This framework employs a very general formalism to simplify 

the construction of very large state transition systems on large clusters and cloud 
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computing platforms. It is based on the Hadoop MapReduce architecture [10,23], which 

makes it specially suited for Data Science Software Verification. 

One of the most distinguished characteristics of this tool is that its mains software 

components can be easily extended to cope with different formalisms. For example, in 

[4] it is shown how several formalisms based on Petri Nets can be adapted and used in 

the MaRDiGraS tool. Taking this fact into consideration in this work we present a novel 

extension of our behavioral specification tool FVS (Feather Weight Visual Scenarios) 

[1–3]. This extension, named VGFVS, serves the purpose of integrating FVS with 

MaRDiGraS. FVS is a very simple yet powerful behavioral specification language 

based on visual scenarios depicting the expected behavior of the system under analysis. 

It has been extended to cope with temporal and branching behavior, as well as being 

able to synthesize behavior [3]. A parallel version of FVS integrated with a parallel 

model checker was also previously introduced in [2]. We now build on the top of these 

extensions introducing the VG-FVS version, integrating FVS with the MaRDiGraS tool 

so that now FVS is also being able to tackle the state explosion problem. Our approach 

is empirically validated by analyzing several examples found in the literature 

considering Data Science and Big Data Systems [5]. These results show a promising 

future for FVS to formally validate Data Science and BIG Data Systems. 

The rest of this work is structured as follows. Section 2 briefly introduces FVS’s 

main features whereas Section 3 describes FVS’s formal characterization. This is 

needed in order to undertand how FVS is integrated with MaRDiGraS, a procedure 

which is detailed in Section 4. Section 5 exhibits the empirical validation of our 

approach. Finally, Section 6 presents future and related work and enumerates some final 

conclusions. 

2. Feather weight Visual Scenarios 

In this section we will informally describe the standing features of FVS. The reader 

is referred to [1] for a formal characterization of the language. FVS is a graphical 

language based on scenarios. Scenarios are partial order of events, consisting of points, 

which are labeled with a logic formula expressing the possible events occurring at that 

point, and arrows connecting them. An arrow between two points indicates precedence. 

For instance, in Figure 1-(a) A-event precedes B-event. In Figure 1-b the scenario 

captures the very next B-event following an A-event, and not any other B-event. Events 

labeling an arrow are interpreted as forbidden events between both points. In Figure 1-

c A-event precedes B-event such that C-event does not occur between them. Finally, 

FVS features aliasing between points. Scenario in 1-d indicates that a point labeled with 

A is also labeled with A ∧ B. It is worth noticing that A-event is repeated on the labeling 

of the second point just because of FVS formal syntaxis. 
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Fig.1. Basic Elements in FVS 

We now introduce the concept of FVS rules, a core concept in the language. The 

intuition is that whenever a trace “matches” a given antecedent scenario, then it must 

also match at least one of the consequents. In other words, rules take the form of an 

implication: an antecedent scenario and one or more consequent scenarios. Graphically, 

the antecedent is shown in black, and consequents in grey. Since a rule can feature more 

than one consequent, elements which do not belong to the antecedent scenario are 

numbered to identify the consequent they belong to. An example is shown in Figure 2. 

The rule describes a very simple requirement from a communication protocol to be 

embedded on an onboard satellite computer: if some data is ready to be transmitted and 

the satellite is connected, then transmission can begin. 

 
Fig.2. An FVS rule example 

3. FVS Formal Definitions 

In this section we sketched the most representative formal definitions of the FVS 

language. For a more comprehensive understanding of FVS’s formal syntax and 

semantic please see [1]. These definitions are necessary to understand how FVS con be 

embedded into the MarDIGRaS formalism and tool. We need to define the following 

FVS concepts: scenarios, morphisms, FVS translation into Büchi automata, how states 

are represented in FVS, and how state’s successors are calculated. With these 

definitions in mind the inclusion of FVS into MaRDiGraS can be straightforwardly 

delineated. 

We first define the concept of scenarios. 

Definition 1 (FVS Scenario). An FVS scenario is a tuple (Σ,P,l, ≡,≢,< ,γ) where: 

S1: Σ is a finite set of propositional variables standing for types of events such that 

Σ = Σc ⋃
 
Σuc where Σc represents controllable events and Σuc non controllable events 

S2: P is a finite set of points; 

S3: 𝓁: P → P𝓛 (Σ) is a function that labels each point with a given formula; 

S4: ≡ ⊆ P × P is an equivalence relation; 

S5: ≢ ⊆ P × P is an asymmetric relation among points; 

S6: <⊆ (P ⊎{0}×P ⊎{∞}) ∖{⟨0, ∞⟩} is a precedence relation between points, where 

0 and ∞ represent the beginning and the end of execution, respectively; S7: γ : (≢ ∪ <) 

→ P𝓛 (Σ) assigns to each pair of points, related by precedence or separation, a formula 

which constrains the set of events occurrences that may occur between the pair. 

We now formally define morphisms between scenarios. Intuitively, we would like 

to obtain a matching between scenarios ,i.e., a mapping between their points exhibiting 

how a scenario “specializes” another one [7]. 
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Definition 2 (Morphism). Given two scenarios S1, S2 (assuming a common 

universe of event propositions), and f a total function between P1 and P2 we say that f is 

a morphism from S1 to S2 (denoted f : S1 → S2) iff  

M1: 𝓁2(a) ⇒ 𝓁1(p) is a tautology for all p ∈ P1 and all a ∈ P2 such that a ≡2  f(p); 

M2: γ2(f(p), f(q)) ⇒ γ1(p,q) is a tautology for all p, q ∈ P1; 

M3: if p ≡1 q then f(p) ≡2  f(q) for all p, q ∈ P1;  

M4: if p ≢1 q then f(p) ≢2 f(q) for all p, q ∈ P1;  

M5: if p <1 q then f(p) <2 f(q) for all p, q ∈ P1. 

3.1 Tableau Algorithm: Translating FVS Scenarios into Büchi Automata 

We now present some basic concepts to understand the tableau algorithm while the 

reader is referred to [1] for a more detailed version of it. From a formal point of view, 

FVS scenarios can be defined as morphisms from the antecedent to the consequent. The 

algorithm relies on the notion of situations [1]. In few words, a situation represents for 

a given rule possible combinations of partial matches from the antecedent to the 

consequent. Consider the following example in figure 3. In this case, a rule with two 

consequents is shown. Furthermore, there are three partial matches for consequent one, 

and two for consequent two. Therefore, η1 consists of the three morphisms in the first 

column ( ), whereas η2 consists of the two morphisms in the second column (

 

Given a rule R, the tableau builds a Büchi Automaton B = ⟨Σ,S,S0,∆,F⟩ such that Σ 

constitutes minterms over ΣR and the set of states S are triples (ϒR × bool × P𝓛 (ΣR)), 

where P𝓛 (Σ) is a function that labels each point with a given formula. The set ΥR 

associated to a state (a set of situations η), denoted situations(S), symbolically 

represents all the possible combination of partial matches obtained up to that state from 

the antecedent to each consequent. The second term of the triple identify accepting 

states. This boolean variable is set to true when the pattern is completely matched and 

will make the state transient. Finally, a third element is needed to maintain future 

obligations of the trace. These formulas are needed when rules predicate about 

conditions that must hold until the end of the trace. 

 

Fig.3. Asituationexample 

 

The pseudo-code sketched in Algorithm 1 computes the successor states for 

transition relation ∆. Starting from the initial state (⟨∅,false,true⟩), the automata will try 

to incrementally “construct” the pattern as events, represented by minterms, occurs. For 
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every minterm, algorithm 1 computes all possible matchings considering matchings in 

the antecedent and also in each consequent. This is obtained trough two auxiliary 

algorithms, advanceAntecedent (line 5) and advanceConsequent (line 6). Line 7 

analyzes if any successor reaches a trap situation, a situation where the antecedent has 

been matched (a morphism such that A’ = A), but matching for all consequents is known 

unfeasible. A configuration of an scenario stands for a valid set of events occurring in 

the scenario.Lines 8 and 9 check if any consequent has been matched by the last move. 

This is, goalmatched[i] = true if and only if consequent Ci is matched. Line 10 analyzes 

if the next state is an accepting state: a consequent has been matched and it is not a trap 

situation. Finally, line 11 returns the expected output. 

4. VG-FVS: FVS meets MaRDiGraS 

In this section we show how FVS is connected to the MaRDiGraS tool. In order to 

achieve this, we first explain MaRDiGraS main concepts (Section 4.1) and latter on, 

how them are extended to cope with FVS definitions (Section 4.2). 

4.1 MaRDiGraS 

As explained in [4] MaRDiGraS is a distributed software tool aimed to built big 

states spaces for different kinds of formalisms. It is a very helpful tool since it is 

designed for simplifying the task of dealing with a large amount of reachable states by 

exploiting large clusters of machines. It was conceived as a generic library built on top 

of Hadoop MapReduce [10,23]. One of the most remarkable features of this tool is that 

its mains software components can be easily extended to cope with different 

formalisms. For example, in [4] it is shown how several kinds of Petri Nets can be 

adapted and used in the MaRDiGraS tool. 
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Algorithm Succ(S : State,m : minterm) : set of states; 

Precondition : m ∧ obligations(S) is satisfiable; 

newSits := ∅; 

foreach η ∈ Situations(S) do 

newSits := add(newSits,advanceAntecedent(η,m)); 

newSits := add(newSits,advanceConsequent(η,m)); 

 

trapSituation : ∃η ∈ newSits ∀i ∀j ∈ [1..n] gj
i : A’ → Cj

i ∈ η ∧ A’ = A ∧ Cj
i it 

is not a configuration of Cj; 

foreach j ∈ [1..n] do 

goalmatched[j] := ∃η ∈ situations(S) ∧ 

gj
i : A’ → Cj

i ∈ η ∧ A’ → Cj ⋃ Fj
i ∧ m ∈ (RF(Cj

i) ∧ Cj
i ⋃ Fj

i = ⋃ Ci;; 

 

goalMatched := (∃j (goalmatched[j])) ∧ (¬trapSituation) ; 

return { ⟨newSits, GM, Obligations⟩ such that 

GM → goalMatched ∧ GM = true → ∃j(goalmatched[j]) ∧ Obligations = 

Obligations(S) ∧ ∧ 
j∈I R(Cj) ∧ GM = false → Obligations = Obligations(S) 

Algorithm 1: Successor states 

m 
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In the tool the behavior is given in terms of a labeled state transition system. The 

state explosion problem is addressed by building an abstraction of the original 

(concrete) state transition system. It is key in this process to properly define the notion 

of state, reachable states and successors states. Computation starts by considering the 

initial state of the system under analysis and goes on with a sequential state-space 

building phase until the set of states not yet explored becomes large enough, where 

“large enough” is a threshold to be defined for each system [4]. 

Architecturally, the MaRDiGraS contains two main artifacts: The Data component 

and the Core Component. The Data component consists of the “business” entities, such 

as the State or the Edge classes. This is the component to be addressed when trying to 

incorporate a given formalism into the tool. On the other hand, the Core components 

contains the implementation of all the algorithms that implements MaRDiGraS’s main 

functioning. 

In concrete, in order to adapt any formalism to this tool the following elements from 

the MaRDiGraS software must be extended: 

– State: is an abstract class which should be extended to instantiate the state concept 

in a particular formalism. 

– Successors: this method must return a list of new State objects representing the 

states directly reachable from the subject of the call. It must be defined for each 

formalism to be employed. 

– IdentifyRelationship: this method must evaluate the actual relationship between 

(abstract) states sharing some specific features. The possible output values are: 

NONE, EQUALS, INCLUDED and INCLUDES. 

– Edge: an abstract class which should be extended to represent the edge concept. 

– GetFeatures: this functions analyses the equivalence between states. 

4.2 VG-FVS: Adding FVS into the MaRDiGraS oily machinery 

Given the formal definitions characterizing our FVS language given in Section 3 

the combination of FVS with MaRDiGras is described as follows. We defined the 

MaRDiGrass state class as the states of the Büchi Automaton representing an FVS 

Scenario (see section 3.1). Similarly, the Successors method implementation follows 

the successors algorithm depicted in Algorithm 1. For the Edge class we implemented 

the notion of FVS morphisms. For the IdentifyRelationship method we implemented 

the notion of FVS configurations viewed as a set of FVS situations. This method returns 

NONE if the two configurations given as input do not match, returns EQUALS if they 

contain the same elements, INCLUDED in the case where the first configurations 

includes the second one but they are not the same one, and INCLUDES where the 

second configuration includes the first one but they are not the same one. Perhaps the 

most challenging implementation arose when dealing with the GetFeatures function. 

In this case, we implemented this function such as it returns the set of morphisms in 

each situation that fulfill the given consequent of the FVS rule. It was the only definition 

that requires some extra work since this concept was not included in the FVS formal 

characterization. Table 1 resumes the integration between FVS and MaRDiGraS. 
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Table 1. FVS-MaRDiGraS Integration 

MaRDiGraS Element FVS Element 

State FVS Büchi State 

Successors FVS Succ Method 

Edge Morphisms 

IdentifyRelationship Configurations Equivalence 

GetFeatures Morphisms Fulfilment 

5. Experimentation Results 

The empirical validation of the novel integration introduced in this work was based 

on previous experiments shown in [2], where we compared the parallel version of FVS 

combined with a distributed model checker against the technique presented in [5], 

which also addresses formal verification in big data systems. Also, we conducted the 

same case of studies and we compared not only execution times but also the space 

dimension. In this occasion, we build on the top of that experiment comparing also 

the performance of VG-FVS. We ran our experiments in a Bangho Inspiron5458, with 

a Dual Core i5-5200U and 8GB RAM memory. The analyzed case of studies, taken 

from [5], were a simple Load Balancing System and a Shared Memory Example, where 

clients try to gain access to a shared memory through a unique bus. Different 

configurations considering several number of clients were considered. 

Table 2 shows the empirical comparison considering the execution time view. The 

column MAP-Reduce-CTL stands for the technique in [5], the column Parallel FVS 

stands for the previous version of our approach whereas the third column corresponds 

to VG-FVS. Execution times are expressed in seconds. 

 

Table 2. Empirical Comparison: Execution Time 

Example Map-Reduce CTL Parallel FVS VG-FVS 

5-Shared 110 sec 188 sec 165 sec 

10-Shared 1032 sec 1341 sec 1005 sec 

2-Load Balancing 43 sec 76 sec 71 sec 

5-Load Balancing 114 sec 136 sec 120 sec 

10-Load Balancing 18958 sec 20022 sec 18902 sec 

 

Table 3 shows the empirical comparison considering the size dimension. In this 

case, we present the results for two concrete examples: the shared Memory example 

with 5 clients and the Load Balancing example with 5 clients. Similar results were 

obtained for the other versions of the examples considering more clients. For measuring 

size, we considered the number of states (st in Table 3) and transitions (tr in Table 3) of 

the automata involved in the verification process. 

 

 

 



  XX Workshop de Ingeniería de Software 

> Full Papers  Página | 286 

Table 3. Empirical Comparison: Size 

Example Map-Reduce CTL Parallel FVS VG-FVS 

5-Shared 1863 st 7528 tr 3600 st 6500 tr 2160 st 3771 tr 

5-Load Balancing 116175 st 425604 tr 301001 st 432653 tr 216720 st 302857 tr 

 

Observations A few important notes can be taken from the empirical evaluation we 

conducted. Perhaps the most scintillating one is that using the new version of FVS the 

size of the automata involved was significatively reduced. In average, the size of the 

automata was reduced by a thirty percent, which represent a notable impact in the 

verification process. In addition, execution time was also reduced empowering the 

results of the validation of our approach. It must be noted that our results are still a bit 

worse than those ones produced by the technique [5]. However, this is somehow 

expected since our language is more expressive and flexible [1]. 

6. Conclusions and Future and Related Work 

In this work we present VG-FVS, a novel extension of FVS to cope with the state 

explosion problem, a classic issue to be tacked when dealing with large systems. This 

is achieved by integrating FVS with the MaRDiGraS tool [4], a very well known 

software library specially built to address this problem. The results show the clear 

benefits of this integration, making FVS a very solid alternative to formally validate 

BIG DATA systems. 

With respect to related work the most obvious comparison is against [5]. In this 

work the MaRDiGraS tool is also employed to formally validate distributed systems in 

the cloud. The empirical validation of our work shown in Section 5 is based on this 

approach ([5]). As a first difference we can say that our approach reflects nearly the 

same performance results while denoting a more expressive and flexible specification 

language. In the same line, we believe that the declarative nature of FVS specifications 

makes a more suitable approach to be adopted in the software industry. Work in [6] 

presents Maude, a technique to formally validate systems in the cloud. This tool is 

specially designated to validate cloud systems, while we pursue a more general 

objective. However, the architectural solution they provide it is a very skilful one. FVS 

could benefit introducing some of the architectural patterns employed in Maude. We 

would also like to interact with approaches like [22], which presents techniques in the 

BIG DATA Testing domain. In [14] an interesting approach based on micro services 

systems is presented. The technique explains how micro services architecture came in 

handy for big data systems’ formal verification, a future line of work we would also 

like to address. In addition, we would like to provide a formal proof of the integration 

presented in this paper, assuring the correctness and soundness of this new FVS version. 
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